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1 Additional Real Data Experiments and Analysis

Recall that the energy functional of the parsimonious labeling problem is defined as:

E(x) =
∑
i∈V

θi(xi) +
∑
c∈C

wcδ(Γ(xc)). (1)

where δ() is the diversity function defined over the set of unique labels present in the
clique xc. In our experiments, we frequently use the truncated linear metric. We define
it below for the sake of completeness.

θi,j(la, lb) = λmin(|la − lb|,M), ∀la, lb ∈ L. (2)

where λ is the weight associated with the metric and M is the truncation constant.
In case of real data, the high-order cliques are defined over the superpixels obtained

using the mean-shift method [Comaniciu and Meer, 2002]. The clique potentials used for
the experiments are the diameter diversity of the truncated linear metric. A truncated
linear metric (equation (2)) enforces smoothness in the pairwise setting, therefore, the
diameter diversity of the truncated linear metric will naturally enforce smoothness in the
high-order cliques, which is a desired cue for the two applications we are dealing with.

In all the real experiments we use the following form of wc (for the high order cliques):

wc = exp−
ρ(xc)

σ2 , where ρ(xc) is the variance of the intensities of the pixels in the clique xc
and σ is a hyperparameter.

In order to show the modeling capabilities of the parsimonious labeling we compare
our results with the well known α−expansion [Veksler, 1999], trws [Kolmogorov, 2006],
and the Co-occ [Ladicky et al., 2010]. We also show the effect of clique sizes, which in
our case are the superpixels obtained using the mean-shift algorithm, and the parameter
wc associated with the cliques, for the purpose of understanding the behaviour of the
parsimonious labeling.

1.1 Stereo Matching

Please refer to the paper for the description of the stereo matching problem. Figures 1
and 2 shows the comparisons between different methods for the ‘teddy’ and ‘tsukuba’
examples, respectively. It can be clearly seen that the parsimonious labeling gives better
results compared to all the other three methods. The parameter wc can be thought of as
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the trade off between the influence of the pairwise and the high order cliques. Finding
the best setting of wc is very important. The effect of the parameter wc, which is done
by changing σ, is shown in the Figure 3. Similarly, the cliques have great impact on the
overall result. Large cliques and high value of wc will result in over smoothing. In order
to visualize this, we show the effect of clique size in the Figure 4.

(a) Gnd Truth (b) α− exp (c) trws (d) Co-occ (e) Our Method

Figure 1: Comparison of all the methods for the stereo matching of ‘teddy’. We used the
optimal setting of the parameters proposed in the well known Middlebury webpage and
[Szeliski et al., 2008]. The above results are obtained using σ = 102 for the Co-occ and
our method. Clearly, our method gives much smooth results while keeping the underlying
shape intact. This is because of the cliques and the corresponding potentials (diversities)
used. The diversities enforces smoothness over the cliques while σ controls this smoothness
in order to avoid over smooth results.

(a) Gnd Truth (b) α− exp (c) trws (d) Co-occ (e) Our Method

Figure 2: Comparison of all the methods for the stereo matching of ‘tsukuba’. We used
the optimal setting of the parameters proposed in the well known Middlebury webpage and
[Szeliski et al., 2008]. The above results are obtained using σ = 102 for the Co-occ and
our method. We can see that the disparity obtained using our method is closest to the
ground truth compared to all other methods. In our method, the background is uniform
(under the table also), the camera shape is closest to the ground truth camera, and the
face disparity is also closest to the ground truth compared to other methods.

(a) σ = 103 (b) σ = 104

Figure 3: Effect of σ in the parsimonious labeling. All the parameters are same except
for the σ. Note that as we increase the σ, the wc increases, which in turn results in over
smoothing.
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Figure 4: Effect of clique size (superpixels). The top row shows the cliques (superpixels)
used and the bottom row shows the stereo matching using these cliques. As we go from
left to right, the minimum number of pixels that a superpixel must contain increases. All
the other parameters are the same. In order to increase the weight wc, we use high value
of σ, which is σ = 105 in all the above cases.

1.2 Image Inpainting and Denoising

Please refer to the paper for the description of the image inpainting and the denoising
problem. Figures 5 and 6 shows the comparisons between the different methods for
the ‘penguin’ and the ‘house’ examples, respectively. It can be clearly seen that the
parsimonious labeling gives highly promising results compared to all the other methods.

(a) Original (b) Input (c) α− exp (d) trws (e) Co-occ (f) Our

Figure 5: Comparison of all the methods for the image inpainting and denoising problem
of the ‘penguin’. Notice that our method recovers the hand of the penguin very smoothly.
In other methods, except Co-oc, the ground is over-smooth while our method recovers the
ground quite well compared to others.

(a) Original (b) Input (c) α− exp (d) trws (e) Co-occ (f) Our

Figure 6: Comparison of all the methods for the image inpainting and denoising problem
of the ‘house’.
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2 Proof of Theorems

The labeling problem. As already defined in the paper, consider a random field
defined over a set of random variables x = {x1, · · · , xN} arranged in a predefined lattice
V = {1, · · · , N}. Each random variable can take a value from a discrete label set L =
{l1, · · · , lH}. The energy functional corresponding to a labeling x is defined as:

E(x) =
∑
i∈V

θi(xi) +
∑
c∈C

θc(xc). (3)

where θi(xi) is any arbitrary unary potential, and θc(xc) is a clique potential for assigning
the labels xc to the variables in the clique c.

Notations. Γ(xc) denotes the set of unique labels present in the clique xc. δ(Γ(xc)) and
δdia(Γ(xc)) denotes the diversity and the diameter diversity of the unique labels present
in the clique xc, respectively. M = maxc |xc| is the size of the largest maximal-clique and
|L| is the number of labels.

2.1 Multiplicative Bound of the Hierarchical Move Making Al-
gorithm for the Hierarchical P n Potts Model

Theorem 1. The move making algorithm for the hierarchical P n Potts model, Algo-
rithm 1, gives the multiplicative bound of

(
r
r−1

)
min(M, |L|) with respect to the global

minima. Here, M is the size of the largest maximal-clique and |L| is the number of
labels.

Proof. Let x∗ be the optimal labeling of the given hierarchical P n Potts model based
labeling problem. Note that any node p in the underlying r-hst represents a cluster
(subset) of labels. For each node p in the r-hst we define following sets using x∗:

Lp = {li|li ∈ L, i ∈ p},
Vp = {xi : x∗i ∈ Lp},
Ip = {c : xc ⊆ Vp},

Bp = {c : xc ∩ Vp 6= ∅,xc * Vp},
Op = {c : xc ∩ Vp = ∅}. (4)

In other words, Lp is the set of labels in the cluster at pth node, Vp is the set of nodes
whose optimal label lies in the subtree rooted at p, Ip is the set of cliques such that the
optimal labeling lies in the subtree rooted at p, Bp is the set of cliques (boundary cliques)
such that ∀xc ∈ Bp,∃{xi, xj} ∈ xc : x∗i ∈ Lp, x∗j /∈ Lp, and Op is the set of outside cliques
such that the optimal assignment for all the nodes belongs to the set L\Lp. Let’s define
xp as the labeling at node p. We prove the following lemma relating x∗ and xp.

Lemma 1. Let xp be the labeling at node p, x∗ be the optimal labeling of the given hier-
archical P n Potts model, and δdia(Γ(xpc)) be the diameter diversity based clique potential
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defined as maxli,lj∈Lp d
t(li, lj),∀p, where dt(., .) is the tree metric defined over the given

r-hst, then the following bound holds true at any node p of the r-hst.∑
c∈Ip

δdia(Γ(xpc)) ≤
(

r

r − 1

)
min(M, |L|)

∑
c∈Ip

δdia(Γ(x∗c)). (5)

Proof. We prove the above lemma by mathematical induction. Clearly, when p is a leaf
node, xi = p,∀i ∈ V . For a non-leaf node p, we assume that the lemma holds true for the
labeling xq of all its children q. Given the labeling xp and xq, we define a new labeling
xpq such that

xpq =
{ xqi if x∗i ∈ Lq,
xpi otherwise.

(6)

Note that xpq lies within one α-expansion iteration away from xp. Since xp is the local
minima, we can say that

E(xp|Ip) + E(xp|Bp) + E(xp|Op) ≤ E(xpq|Ipq) + E(xpq|Bpq) + E(xpq|Opq)
E(xp|Ip) + E(xp|Bp) ≤ E(xpq|Ipq) + E(xpq|Bpq) (7)∑

c∈Ip
δdia(Γ(xpc)) +

∑
c∈Bp

δ(Γ(xpc)) ≤
∑
c∈Ipq

δdia(Γ(xpqc )) +
∑
c∈Bpq

δdia(Γ(xpqc )) (8)∑
c∈Iq

δdia(Γ(xpc)) +
∑
c∈Bq

δdia(Γ(xpc)) ≤
∑
c∈Iq

δdia(Γ(xpqc )) +
∑
c∈Bq

δdia(Γ(xpqc )) (9)

Using the mathematical induction we can write∑
c∈Iq

δdia(Γ(xpc)) +
∑
c∈Bq

δdia(Γ(xpc)) ≤ min(M, |L|)
(

r

r − 1

)∑
c∈Iq

δdia(Γ(x∗c)) +
∑
c∈Bq

δdia(Γ(xpqc )).

(10)

Now consider a clique c ∈ Bq. Let ep be the length of edges from node p to its children q.
Since c ∈ Bq, there must exist atleast two nodes xi and xj in xc such that x∗i ∈ Lq and
x∗j /∈ Lq, therefore, by construction of r-hst

δdia(Γ(x∗c)) ≥ 2ep (11)

Furthermore, by the construction of xpq, Lpq ⊆ Lp, therefore, in worst case (leaf
nodes), we can write

δdia(Γ(xpqc )) = maxli,lj∈Lpqd
t(li, lj) ≤ 2ep

(
1 +

1

r
+

1

r2
+ · · ·

)
= 2ep

(
r

r − 1

)
≤ δdia(Γ(x∗c))

(
r

r − 1

)
. (12)
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From inequalities (10) and (12)∑
c∈Iq

δdia(Γ(xpc)) +
∑
c∈Bq

δdia(Γ(xpc)) ≤ min(M, |L|)
(

r

r − 1

)∑
c∈Iq

δdia(Γ(x∗c)) +(
r

r − 1

)∑
c∈Bq

δdia(Γ(x∗c)).

(13)

In order to get the bound over the total energy we sum over all the children q of p,
denoted as η(p). Therefore, summing the inequality (13) over η(p) we get

∑
q∈η(p)

∑
c∈Iq

δdia(Γ(xpc)) +
∑
q∈η(p)

∑
c∈Bq

δdia(Γ(xpc)) ≤ min(M, |L|)
(

r

r − 1

) ∑
q∈η(p)

∑
c∈Iq

δdia(Γ(x∗c))

+

(
r

r − 1

) ∑
q∈η(p)

∑
c∈Bq

δdia(Γ(x∗c)). (14)

The LHS of the above inequality can be written as∑
q∈η(p)

∑
c∈Iq

δdia(Γ(xpc)) +
∑
q∈η(p)

∑
c∈Bq

δdia(Γ(xpc)) ≥
∑

c∈∪q∈η(p)Iq
δdia(Γ(xpc)) +

∑
c∈∪q∈η(p)Bq

δdia(Γ(xpc))

=
∑
c∈Ip

δdia(Γ(xpc)). (15)

The above inequality and equality is due to the fact that ∩q∈η(p)Iq = ∅, ∩q∈η(p)Bq is not
necessarily an empty set, δdia(Γ(xc)) ≥ 0, and Ip = {∪q∈η(p)Iq} ∪ {∪q∈η(p)Bq}. Now let
us have a look into the second term of the RHS of the inequality (14)

∑
q∈η(p)

∑
c∈Bq

δdia(Γ(x∗c)) ≤
∑

c∈∪q∈η(p)Bq
min(|η(p)|, |xc|)δdia(Γ(x∗c)) (16)

≤ min

(
max
p∈η(p)

|η(q)|,max
c
|xc|
) ∑
c∈∪q∈η(p)Bq

δdia(Γ(x∗c))

= min(L, |M|)
∑

c∈∪q∈η(p)Bq
δdia(Γ(x∗c)). (17)

The inequality (16) is due to the fact that ∪q∈η(p)Bq can not count a clique more than
min(|η(p)|, |xc|) times. Therefore, using the inequality (17) in the RHS of the inequality
(15) we get

min(M, |L|)
(

r

r − 1

) ∑
q∈η(p)

∑
c∈Iq

δdia(Γ(x∗c)) +

(
r

r − 1

) ∑
q∈η(p)

∑
c∈Bq

δdia(Γ(x∗c))

≤ min(M, |L|)
(

r

r − 1

) ∑
c∈∪q∈η(p)Iq

δdia(Γ(x∗c)) +
∑

c∈∪q∈η(p)Bq
δdia(Γ(x∗c))


= min(M, |L|)

(
r

r − 1

)∑
c∈Ip

δdia(Γ(x∗c)). (18)
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Algorithm 1 The Move Making Algorithm for the Hierarchical P n Potts Model.

input r-hst Metric; wc,∀c ∈ C; and θi(xi),∀i ∈ V
1: τ = T , the leaf nodes
2: repeat
3: for each p ∈ N (τ) do
4: if |η(p)| = 0, leaf node then
5: xpi = p, ∀i ∈ V
6: else
7: Fusion Move

t̂p = argmin
tp∈{1,··· ,|η(p)|}N

E(tp) (20)

8: xpi = x
η(p,t̂pi )
i .

9: end if
10: end for
11: τ ← τ − 1
12: until τ > 0.

Finally, using inequalities (14), (15) and (18) we get∑
c∈Ip

δdia(Γ(xpc)) ≤ min(M, |L|)
(

r

r − 1

)∑
c∈Ip

δdia(Γ(x∗c)). (19)

Applying the above lemma to the root node proves the theorem.

2.2 Multiplicative Bound of the Algorithm 2 for the Parsimo-
nious Labeling

Theorem 2. The move making algorithm defined in Algorithm 2 gives the multiplicative
bound of

(
r
r−1

)
(|L| − 1)O(log |L|) min(M, |L|) for the parsimonious labeling problem.

Here, M is the size of the largest maximal-clique and |L| is the number of labels.

Proof. Let us say that d(., .) is the induced metric of the given diversity (δ,L) and δdia be
it’s diameter diversity. We first approximate d(., .) as a mixture of r-hst metrics dt(., .).
Using Theorem 3 we get the following relationship

d(., .) ≤ O(log |L|)dt(., .). (21)

For a given clique xc, using Proposition-1, we get the following relationship

δdia(Γ(xc)) ≤ δ(Γ(xc)) ≤ (|Γ(xc)| − 1)δdia(Γ(xc)). (22)

Therefore, using equations (22) and (21), we get the following inequality

δdia(Γ(xc)) ≤ δ(Γ(xc)) ≤ (|Γ(xc)| − 1)δdia(Γ(xc))

≤ O(log |Γ(xc)|)(|Γ(xc)| − 1)δdiat (Γ(xc)). (23)
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Algorithm 2 The Move Making Algorithm for the Parsimonious Labeling Problem.

input Diversity (L, δ); wc,∀c ∈ C; θi(xi),∀i ∈ V ; L; k
1: Approximate the given diversity as the mixture of k hierarchical P n Potts model

using Algorithm 3.
2: for each hierarchical P n Potts model in the mixture do
3: Use the hierarchical move making algorithm defined in the Algorithm 1.
4: Compute energy corresponding to the solution obtained.
5: end for
6: Choose the solution with the minimum energy.

Algorithm 3 Diversity to Mixture of Hierarchical P n Potts model.

input Diversity (L, δ); k
1: Compute the induced metric, d(.), where d(li, lj) = δ({li, lj}),∀li, lj ∈ L.
2: Approximate d(.) into mixture of k r-hst metrics dt(.) using the algorithm proposed

in [Fakcharoenphol et al., 2003].
3: for each r-hst metrics dt(.) do
4: Obtain the corresponding Hierarchical P n Potts model by defining the diameter

diversity over dt(.)
5: end for

where, δdiat (Γ(xc)) is the diameter diversity defined over the tree metric dt(., .) which is
obtained using the randomized algorithm [Fakcharoenphol et al., 2003] on the induced
metric d(., .).

Hence, combing the inequality (23) and the previously proved Theorem 1 proves the
Theorem 2.

Notice that, in case our diversity in itself is a diameter diversity, we don’t need the
inequality (22), therefore, the multiplicative bound reduces to

(
r
r−1

)
(log |L|) min(M, |L|).

Theorem 3. Given any distance metric function d(., .) defined over a set of labels L, the
randomized algorithm given in [Fakcharoenphol et al., 2003] produces a mixture of r-hst
tree metrics dt(., .) such that d(., .) ≤ O(log |L|)dt(., .).
Proof: Please see the reference [Fakcharoenphol et al., 2003].

Proposition 1. Let (L, δ) be a diversity with induced metric space (L, d), then the fol-
lowing inequality holds ∀Γ ⊆ L.

δdia(Γ) ≤ δ(Γ) ≤ (|Γ| − 1)δdia(Γ). (24)

Proof: Please see the reference [Bryant and Tupper, 2014].
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